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Outline

Brief review of NASA Ames Research Center rocket noise
experiment.

The challenges.

Review of the dominant noise components of hot
supersonic laboratory jets.

Applicability of similarity spectra to near field high speed
jet noise.

Applicability of similarity spectra to rocket noise.



Brief review of NASA Ames Research Center
rocket noise experiment.

“ Measurements of Unsteady Pressure Fluctuations near the
Plume of a Solid Rocket Motor” by W. C. Horne, N. J.
Burnside, J. Panda and C. Brodell published in the
International Journal of Aeroacoustics, 2016, Vol. 15,
pp. 554-569.

* Spectral data in the near field of the rocket plume are
provided.

« Experiment consists of two tests: high burn and low burn



15 microphones low burn high burn



The Challenges are :

We have spectral data from 15 microphones.

Can we use this information to determine:
1. the dominant noise components in the
near field of a solid propellant rocket.
2. the spatial distribution of the dominant noise

components in the near field and their sources.



Dominant noise components of hot supersonic

laboratory jets in the far field

Turbulent mixing noise

Fine scale turbulence noise
Large turbulence structures noise

Broadband shock cell noise



Jet Mixing Noise

Small blobs of turbulence or
fine scale turbulence

nozzle

Large turbulence structures

Pulsed laser picture of the large turbulence structures in the
mixing layer of a Mach 1.3 jet



Noise from fine scale turbulence

from large turbulence
structures

Nozzle

\Bg Mach wave radiation

The two noise-source model of high-speed jets
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The two similarity spectra
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The two self-similar regions of a jet flow.
Both the mean flow and turbulence exhibit self similarity.
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Summary

Characteristics of turbulence mixing noise of laboratory jets

1. Noise spectrum has a single peak, even though there are two
dominant noise components.

2. Change of dominancy of the two noise components takes place
in the angular sector of 105 deg to 125 deg.

3. At 130 deg and 140 deg. the noise spectrum is totally dominated
by the noise of the large turbulence structures of the jet flow.

4. Atinlet angle less than 105 deg. The noise spectrum is
dominated by fine scale turbulence noise.






shock cells

Generation of broadband shock cell noise by the scattering
of instability waves/large turbulence structures by the
quasi-periodic shock cell structure in the jet plume
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Applicability of far field similarity spectra to
the near noise field of high-speed jets.

B. Greska, A.Krothapally, W. C. Horne, and N. Burnside,
“A Near-Field Study of High Temperature Supersonic Jets”,
ATAA Paper 2008-3026.

Greska et al performed extensive measurements of the near
field noise of high temperature supersonic jets. We wish to
use their data to demonstrate that the far field similarity

spectra also fit the measured near field spectra



Coordinates of near field noise measurements
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Similarity spectra appear to work for near

field noise of hot supersonic jets as well.

Let’s apply the similarity spectra to the near

field noise of solid propellant rocket.



Summary - far field noise from laboratory jets

There are two dominant components of turbulence mixing noise.

1. Large turbulence structures noise — dominant from 0 deg to 50
deg (exhaust angle).

2. Fine scale turbulence noise — dominant from 70 to 80 deg to
180 deg.

3. Both components are dominant between 55 to 75 deg.

In the far field, jet noise can be regarded to radiate from a point

source. This cannot be so in the near field. So it is necessary to

consider the region of dominance of each noise component in the

near field.



We will analyze near field rocket noise in two steps

1. We will first demonstrate that the near noise field of a
solid propellant rocket has two dominant noise

components just as those of a hot supersonic jet.

2. We will then investigate the region of dominance of

each of the two noise components
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frequency (Hz)
x/D =255, r/D =4.38, low burn



PSD [(Pa)’Hz]

frequency (Hz)
x/D =255, r/D =6.51, low burn



PSD [(Pa)’*/Hz]

frequency (Hz)
x/D =255, r/D =8.62, low burn



PSD [(Pa)’Hz]

frequency (Hz)
x/D =204, r/D =4.32, low burn



PSD [(Pa)’Hz]

frequency (Hz)
x/D =204, r/D =6.51, low burn



PSD [(Pa)’/Hz]

frequency (Hz)
x/D =204, r/D =8.86, low burn



PSD [(Pa)’/Hz]

frequency (Hz)
x/D=16.2, r/D =4.43, low burn



PSD [(Pa)’/Hz]

frequency (Hz)
x/D=16.2, r/D =6.79, low burn



PSD [(Pa)’/Hz]

frequency (Hz)
x/D=16.2, r/D =8.86, low burn



PSD [(Pa)’/Hz]

10’ 10° 10° 10*
frequency (Hz)
x/D=12.1, r/D =4.38, low burn



PSD [(Pa)’Hz]

frequency (Hz)
x/D=12.1, r/D =6.51, low burn




PSD [(Pa)’/Hz]

frequency (Hz)
x/D=12.1, r/D =8.62, low burn



PSD [(Pa)’/Hz]

10' 10° 10° 10*
frequency (Hz)
x/D =740, r/D =4.38, low burn



PSD [(Pa)’/Hz]

frequency (Hz)
x/D =740, r/D =6.61, low burn




PSD [(Pa)’/Hz]

10 10° 10° 10*
frequency (Hz)

x/D=2.90, r/D =101.6, far field, low burn
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Distribution of dominant noise components measured by the microphone array.
L = Large turbulence structures noise, F = fine scale turbulence noise
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Schematic diagram showing the regions of dominance of the two
noise components in the rocket near field at low burn
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noise components in the rocket near field at high burn
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frequency (Hz)
x/D =255, r/D =6.51, high burn
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10’ 10° 10° 10*
frequency (Hz)

x/D =255, r/D =8.62, high burn



PSD [(Pa)’/Hz]

10’ 10° 10° 10*
frequency (Hz)
x/D =204, r/D =4.32, high burn



PSD [(Pa)’/Hz]

10’ 10° 10° 10*
frequency (Hz)

x/D =204, r/D =6.51, high burn



PSD [(Pa)*Hz]

10’ 10° 10° 10*
frequency (Hz)
x/D =204, r/D =8.86, high burn



PSD [(Pa)’/Hz]

10' 10° 10° 10*
frequency (Hz)

x/D =16.2, r/D =4.43, high burn



PSD [(Pa)’Hz]

10 10° 10° 10*
frequency (Hz)

x/D=16.2, r/D =6.79, high burn



PSD [(Pa)’Hz]

10’ 10 10° 10*
frequency (Hz)

x/D =16.2, r/D =8.86, high burn



PSD [(Pa)’/Hz]

10’ 10° 10° 10*
frequency (Hz)
x/D =12.1, r/D =4.38, high burn



PSD [(Pa)’/Hz]

10’ 10° 10° 10*
frequency (Hz)

x/D =12.1, r/D =6.51, high burn



PSD [(Pa)*Hz]

10’ 10° 10° 10*
frequency (Hz)
x/D =12.1, r/D =8.62, high burn
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10’ 10° 10° 10°
frequency (Hz)
x/D =74, r/D=4.38, high burn
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Summary and conclusions

The two far field similarity spectra of laboratory jets are found to be
applicable to the near field noise of solid propellant rockets and hot
supersonic jets.

In the near field of a solid propellant rocket the noise is dominated by
those from the fine scale turbulence and the large turbulence structures
of the plume flow, the same as in the case of far field jet noise.

Based on the measured data, a semi-empirical near field dominant
noise component distribution model for solid propellant rockets is
proposed. In this model, the dominant noise components divide the
near field into three regions. Fine scale turbulence noise is the sole
dominant noise component in the region downstream of the nozzle exit.
This is followed by a region where both large turbulence structures
noise and fine scale turbulence noise are both dominant. Further
downstream the large turbulence structures noise is the only dominant
noise component.



